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Let M be a subset of the real line, and

Ak(M)={(tl,t2,···,tdEMkltl<t2< ... <td for kE N.

Let F( M) be the set of real-valued functions defined on M, fo, fl' ..., fn E

F(M) fixed and linearly independent, and U i = lin UO,fI' ...,f;}, the linear
span of UO,fI' ...,fJ, for i = 0, 1, ..., n. The sequence fO,fI' ...,fn is called
a weak Markov system iff for each k E {O, 1, ..., n}, det(f;(tj))L=o has
weakly constant sign for all (to, t l , ..., tk)EAk+I(M), or, equivalently, iff for
each k E {O, 1, ..., n}, no fE Uk has a strong alternation of length k + 2; i.e.,
there is no (to,t\l ...,tk+dEA k+2(M) with f(tJf(t;+d<O for i=
0, 1, ..., k. If fo == 1, the system is called normalized.

Generalizing a result of D. Zwick [3], in [1] we proved the following
result:

LEMMA. Iffo' fl' ... , fnform a normalized weak Markov system, nofE Un
has a strong oscillation of length n + 2; i.e., there is no (to, t I' , tn+ d E

An+2(M) with [f(td- f(t k - I)]· [f(tk+d- f(tk)] <Ofor k= 1, , n.

The proof was based on the Gauss kernel approximation of weak
Markov systems by Markov systems and the oscillation lemma for nor
malized Markov systems (Lemma 8.7a in [2]). It was, however, pointed
out independently by several authors I that the Gauss kernel concept does
not seem to be needed anywhere else in the basic theory of weak Cebysev
or Markov systems.

We shall subsequently present an elementary proof of the above lemma.
We proceed by induction over n. For n E {O, I} the statement is obvious.

Let us assume it holds for n - 1 and suppose it fails for n. So there exist
fE Un\Un_ 1 and (to, ..., tn+d E An+2(M) with f(to) > f(td </(t2) > ....

1 Oral communications by M. Sommer, D. Zwick and others.
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We distinguish several cases and subcases.

Case 1. dimUn-II{/o, .... ln+tl=n.

Subcase 1a. dim Un-II {II., In} = n - 2. This implies

dim Un-II {IO •.., In} = n - 1.

Fo! hE !(M), let us denote by fz the restriction of h to {to, ..., tn}.
As 10' ...,fn-I are linearly dependent, there is a minimal j with
.lElin{1o, ...~~-d, ,say ~="D:baji' ao, ..·,aj_IE~. We claim that
10' ...,~_ b jj+ I' ···,fn is a (normalized) weak Markov system. Indeed, sup-
pose some gElin{10, ... ,~_ l' ~ + I' , lk} has a strong alternation of length
k + 1, say, in t io ' ..., (k with°~ io< < ik~ n. We have dim Ujl {/O •...• ln+tl ~
j + 1, and so for h := jj - L~:b aJi we get: h(to) = ... = h(tn) =°# h(tn+ d·
But then g + yh E Uk has a strong alternation of length k +2 in t io' ... , t ik'

t n + I for suitable y E ~, a contradiction.
Applying the induction hypothesis to 10' ... ,~-l' ~+ I' ....In' we see that

1cannot have a strong oscillation of length n + 1 in to, ..., tn' and we arrive
at a contradiction.

Subcase lb. dim Un- I I{II.H.ln}=n-1. If we have

dim Un _ I I {/o, , In} = n - 1 or dim Un _ 1 I {II, ..., In + tl = n - 1,

the argument is the same or analogous to Subcase 1a. So let us assume

dim Un-II {IO, ... , In} = dim Un-II {II, ..,In+tl = n.

Now let r E {1, ..., n} be chosen such that

dim Un_II{/I, ... ,I'_I,I'+I, ..,In}=n-1.

So we have

dim Un-II {/O, II, ... , 1,_1, 1,+1, ... , In} = n,

and can define a basis go, ... , gr-I' gr+I' ..., gn of Un-I by

for i,jE{0,1, ...,r-1,r+1, ...,n}.

Now gO(tr) # °would imply that go, ..., gr-I' gr-I' ... , gn are linearly inde
pendent on {t I' ..., tn}, contradicting dim Un _ I I{II . ..., In} = n - 1. So we have
gO(tr) =0. This implies gO(tn+I)#O, for otherwise go would vanish on
{t I' ..., tn+ d, contradicting dim Un -I I{II, ..• In+tl = n.

For B E~, we define
r- 1 n

h,:=go+e L (-l)i gi + e L (-l)i+l gi ·
i= 1 ;=r+ 1
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For sufficiently small e> 0, he has a strong alternation of length n In

to, tl> ..., tr_1> tr+l , ... , tn' and sign he(tn+d=sign go(tn+d#O.
The alternation property yields sign hAtn) = sign he(tn+ d for r < n, and

sign he(tn _ d = sign he{tn + I) for r = n. In either case we obtain:

Now let gE Un_ 1 be such that g interpolatesfin to, ..., tr_ l , tr+l , ... , tno If
we had f{tr) = g(tr), g would have a strong oscillation of length n + 1,
contradicting the induction hypothesis. So we have (f - g)(t r ) # 0, and for
sufficiently small r:x > 0,

d~:=f-g+r:x·sign((f-g)(tr)) L (-lr- i
gi

i=l
i:#; r

has a strong alternation of length n in t I' ... , tn' From (*) we conclude that
for a suitable y E IR, d~ + ygo has a strong alternation of length n + 2 in
to, ..., tn+ l , a contradiction.

Subcase lc. dim Un _ I I It"~ ... , tn} = n. For sufficiently small e > 0, ge E Un- I

defined by

for i odd

for i even
i= 1, ... , n,

has a strong oscillation of length n in t I' ... , tn' and the induction
hypothesis implies ge(tO):::;ge(td=f{td+e<f{to) and ge(tn+d:::;gAtn)=
f{tn) + e <f{tn + I) if n is odd, ge{tn+ I)? ge{tn) - e > f{tn +d if n is even. So
f - go has a strong alternation of length n + 2 in to, ..., tn+2 , a contradic
tion.

Case 2. dim Un-ll{to, ...,ln+Il:::;n-l. Then in a way completely
analogous to the proof of Lemma 4.1, part (b):;. (a), Case 2 in [2],
it can be shown that there exists (uO, .."Un+dELln+2(M) with
dim Un-ll{uo ....,un+Il>dim U n - I I{lo, ...,ln+Il' forming a strong oscillation of
f of length n + 2, and after finitely many repetitions of this argument one
arrives at Case 1.
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